头像
更新时间:
2021-12-31
总访问量:10

应耀

博士

副教授

硕士生导师

10 访问

更新时间:2021.12.31

链接

个人资料

  • 单位:
  • 职务:
  • 研究方向:
  • 联系电话:
  • 电子邮箱: yying@zjut.edu.cn
  • 办公地址: 浙江工业大学 莫干山校区 材料科学与工程学院 A207
  • 个人简介

    应耀,中国科学技术大学本科、硕士、博士,先后在韩国汉阳大学和美国印第安纳大学伯明顿分校做博士后和访问学者,现为浙江工业大学材料科学与工程学院副教授。主要从事高频软磁铁氧体材料,磁存储材料和磁性物理等领域研究。主持国家自然科学基金和浙江省自然科学基金等科研项目多项,以核心成员参与国家重点研发项目、国家自然科学基金重点项目和企业委托重大项目等项目在Journal of the European Ceramic Society,Journal of the American Ceramic Society, Physical Review B, Ceramics International等国内外上发表论文60余篇。开发了面向电动汽车和无线充电应用宽温低损耗MnZn软磁铁氧体、面向5G通讯和大数据中心应用的高频低损耗软磁铁氧体等多种高性能软磁材料。


  • 教学与课程

    本科生课程:《材料物理》、《固体物理导论》、《磁性材料》、《材料科学与工程专业实验》和《认识实习》

    研究生课程:《磁电材料》


  • 科研项目

    1. 高频软磁材料的损耗发生机制与抑制技术的合作研究(2022YFE0109800),国家重点研发计划国际合作项目;

    2. 基于微结构调控的软磁铁氧体高频低功耗化机理及制备方法的研究(U1809215),国家自然科学基金重点项目;

    3. 几何阻挫磁体AB2O4体系中无序诱发自旋玻璃相变的研究(11204270),国家自然科学基金;

    4. 离子占位分布对不同尺度下尖晶石型铁氧体的磁电性能影响研究(LY18E020016), 浙江省自然科学基金;

    5. 几何阻挫磁体中自旋玻璃行为的研究(LQ12A04003),浙江省自然科学基金;

    6.  NFC以及WLC软磁铁氧体薄片技术开发,企业委托项目;

    7.  新型软磁铁氧体材料的技术开发,企业委托项目.


  • 科研成果

    代代表性论文:

    1. Effect of a YIG nanoparticle additive on the magnetic properties of MnZn ferrites for MHz frequency applications., Journal of the American Ceramic Society, 106 (2023), 251-258. 

    2. Effect of compressive stress on power loss of Mn–Zn ferrite for high-frequency applications, Ceramics International, 48(2022), 17723-17728.

    3. Low power loss manganese ferrites with theaddition of Ta2O5 for MHz applications, Journal of Magnetism and Magnetic Materials, 561 (2022),169699.

    4. Low temperature sintered MnZn ferrites for power applications at the frequency of 1 MHz,Journal of the European Ceramic Society, 41 (2021), 5924–5930.

    5. Development of Mn-Zn power ferrite with low losses over a broad temperature range for applications in the high frequency region of 0.5-3 MHz, Ceramics International, 47 (2021), 21425–21432.

    6. Preparation, Microstructure, and Magnetic Properties of Electrodeposited Nanocrystalline L10 FePt Films, Journal of Superconductivity and Novel Magnetism33(2020), 3563–3570. 

    7.  Influence of Particle Size on the Spin Pinning Effect in the fcc-FePt Nanoparticles, Journal of Superconductivity and Novel Magnetism, 32(2019), 1501-1505.

    8. Magnetic Exchange Interactions in Geometrically Frustrated Antiferromagnet of ZnCr2−xGaxO4, Journal of Superconductivity and Novel Magnetism32(2019), 1095–1098.

    9. Structure and Magnetic Properties of the Ti-Doped Pyrochlore Molybdate Y2Mo2(1-x)Ti2xO7, Journal of Superconductivity and Novel Magnetism, 31 (2019), 3563-3568.

    10. Spin Glass in a Geometrically Frustrated Magnet of ZnFe2O4 Nanoparticles, Journal of Superconductivity and Novel Magnetism, 31 (2018), 3553-3558.

    11.  Effect of MoO3 addition on magnetic property and complex impedance of Mn-Zn ferrites with both high Bs and high initial permeability, Journal of Superconductivity and Novel Magnetism, 30 (2017), 1557-1939.

    12. Double Exchange Interaction Between Mn3+ and Ru4+ Ions in La1−xSrxMn1−xRuxO3, Journal of Superconductivity and Novel Magnetism, 28 (2015), 3117–3120.

    13. Complicated Magnetic Behaviors in Zn0.80Ni0.20Fe2O4 Nanoparticles, Journal of Superconductivity and Novel Magnetism, 28 (2015), 1557-1939.

    14. Magnetic properties and Griffiths Singularity in La0.45Sr0.55Mn1-xCoxO3, Journal of Magnetism and Magnetic Materials, 323(201194-100.

    15. Detailed Magnetic Structure of Zn1-xNixFe2O4 NanoparticlesJournal of Applied Physics108 (2010), 023911.

    16. Detailed magnetic structure of CaRu1-xMoxO3, Solid State Communications147 (2008), 388-391.

    17. Effect of Co doping on the magnetotransport properties of La0.45Sr0.55MnO3 perovskite, Physical Review B, 74 (2006), 144433.









链接